(4c^2-3c-2)+(3c^2-4c-2)=c

Simple and best practice solution for (4c^2-3c-2)+(3c^2-4c-2)=c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4c^2-3c-2)+(3c^2-4c-2)=c equation:



(4c^2-3c-2)+(3c^2-4c-2)=c
We move all terms to the left:
(4c^2-3c-2)+(3c^2-4c-2)-(c)=0
We add all the numbers together, and all the variables
-1c+(4c^2-3c-2)+(3c^2-4c-2)=0
We get rid of parentheses
4c^2+3c^2-1c-3c-4c-2-2=0
We add all the numbers together, and all the variables
7c^2-8c-4=0
a = 7; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·7·(-4)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{11}}{2*7}=\frac{8-4\sqrt{11}}{14} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{11}}{2*7}=\frac{8+4\sqrt{11}}{14} $

See similar equations:

| -17-7x=-8x+20 | | -2x+7(-4x-5)=-185 | | 2x-6(-6x+2)=178 | | 6x+4(-4x-16)=6 | | -3x+5(-3x+13)=-151 | | x/2+4=17 | | -7x2=24-9x | | 12=-3x-24 | | 12u+100=34u-10 | | -3x+3(-6x-19)=90 | | 2(x+8)=4(x-2) | | 14y+98=49y-42 | | -5x-58=47 | | 5a+100=25a-100 | | 19z+50=18z+60 | | 10x+129=-410-x | | 15m+80=28m-37 | | 3=54.85-0.75x | | 5k-39=2k+87 | | 5.13(10)2.3x=400 | | -1008=-12(-7x-7) | | w^2-12w-80=0 | | 13m+51=27m-47 | | x2-x-6=(14)(6) | | 8b+69=20b-87 | | -96+9x=54+11x | | 12b-49=9b-43 | | 26s-41=13s+76 | | -8(-7x+31)=-1144 | | 36q+32=54q-76 | | 10v+58=16v-50 | | 39+5x=99 |

Equations solver categories